Hermite-Fejer interpolation at the ‘practical’ Chebyshev nodes

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Hermite-fejer Type Interpolation on the Chebyshev Nodes

ON HERMITE-FEJER TYPE INTERPOLATION ON THE CHEBYSHEV NODES GRAEME J. BYRNE, T.M. MILLS AND SIMON J. SMITH Given / £ C[-l, 1], let Hn,3(f,x) denote the (0,1,2) Hermite-Fejer interpolation polynomial of / based on the Chebyshev nodes. In this paper we develop a precise estimate for the magnitude of the approximation error |£Tn,s(/,x) — f(x)\. Further, we demonstrate a method of combining the dive...

متن کامل

The Lebesgue Function for Generalized Hermite-fejer Interpolation on the Chebyshev Nodes

This paper presents a short survey of convergence results and properties of the Lebesgue function kmn(x) for (0, 1 , . . . , m) Hermite-Fejer interpolation based on the zeros of the nth Chebyshev polynomial of the first kind. The limiting behaviour as n -*• oo of the Lebesgue constant Amn = max{Xm n(x) : — 1 < x < 1} for even m is then studied, and new results are obtained for the asymptotic ex...

متن کامل

Bivariate Lagrange Interpolation at the Chebyshev Nodes

We discuss Lagrange interpolation on two sets of nodes in two dimensions where the coordinates of the nodes are Chebyshev points having either the same or opposite parity. We use a formula of Xu for Lagrange polynomials to obtain a general interpolation theorem for bivariate polynomials at either set of Chebyshev nodes. An extra term must be added to the interpolation formula to handle all poly...

متن کامل

Multivariate polynomial interpolation on Lissajous-Chebyshev nodes

In this contribution, we study multivariate polynomial interpolation and quadrature rules on non-tensor product node sets linked to Lissajous curves and Chebyshev varieties. After classifying multivariate Lissajous curves and the interpolation nodes related to these curves, we derive a discrete orthogonality structure on these node sets. Using this discrete orthogonality structure, we can deriv...

متن کامل

Cardinal Hermite Spline Interpolation with Shifted Nodes

Generalized cardinal Hermite spline interpolation is considered. A special case of this problem is the classical cardinal Hermite spline interpolation with shifted nodes. By means of a corresponding symbol new representations of the cardinal Hermite fundamental splines can be given. Furthermore, a new efficient algorithm for the computation of the cardinal Hermite spline interpolant is obtained...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 1973

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972700043392